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Solutions

Problem 1. Let F be the family of bijective increasing

functions f : [0,1] → [0,1], and let a ∈ (0,1). Determine the

best constants ma and Ma , such that for all f ∈F we have

ma ≤ f (a)+ f −1(a) ≤ Ma .

DAN SCHWARZ

Solution. Clearly, for f ∈F we have f (0) = 0 and f (1) = 1.

We claim Ma = sup{ f (a) + f −1(a) | f ∈ F } = 1+a for

a ∈ (0,1), without being reached for any function f ∈ F

(obviously, of excluded cases, M0 = 0 and M1 = 2, reached

for any function f ∈F ).

We may assume f (a) ≤ a, otherwise we work with f −1

(since certainly f −1 ∈ F , and from f (a) ≥ a would follow

a ≥ f −1(a)). But f −1(a) < 1, therefore f (a)+ f −1(a) < a +1.

For the other part, let us take 0 < ε < 2(1 − a). Consider

the points O(0,0), Aε(a, a − ε/2),Bε(1− ε/2, a), I (1,1). Take

fε to be the piecewise linear function having the broken

line OAεBεI as its graph. Then, considering the points

A′
ε(a − ε/2, a),B ′

ε(a,1 − ε/2), the function f −1
ε will be the

piecewise linear function having the broken line OA′
εB ′

εI as

graph. Under this construction

fε(a)+ f −1
ε (a) = (a −ε/2)+ (1−ε/2) = (a +1)−ε.

We similarly find ma = inf{ f (a)+ f −1(a) | f ∈F } = a for

a ∈ (0,1). A more elegant way, once the above result, runs

like this.

Define the operator T : F → F by T f (x) = 1 − f (1 − x)

(this is well-defined, since clearly T f : [0,1] → [0,1] is

bijective increasing). It is now immediately verified T is

involutive, i.e. T 2 f = f , and also (T f )−1 = T f −1. Therefore

(T f )(a)+ (T f )−1(a) = T f (a)+T f −1(a), evaluating as

(1− f (1−a))+ (1− f −1(1−a)) = 2− ( f (1−a)+ f −1(1−a)).

But { f (a)+ f −1(a) | f ∈ F } = {(T f )(a)+ (T f )−1(a) | f ∈ F }

(since T is bijective), and ma = 2−M1−a = 2−(1+(1−a)) = a.

Thus the answer is ma = a and Ma = 1+a, for which

a < f (a)+ f −1(a) < 1+a �

Problem 2. Three points inside a rectangle determine a

triangle. A fourth point is taken inside the triangle.

i) Prove at least one of the three concave quadrilaterals

formed by these four points has perimeter lesser than that

of the rectangle.

ii) Assuming the three points inside the rectangle are

three corners of it, prove at least two of the three concave

quadrilaterals formed by these four points have perimeters

lesser than that of the rectangle.

DAN SCHWARZ

Solution.

i) Draw lines, parallel to the sides of the given rectangle,

through the vertices of the triangle and consider the least

rectangle ABC D thus formed which contains the triangle.

In the general case, one vertex of the triangle is situated at

A, while the other two are, say X on the side BC and Y on

the side DC (with the possibility that they are even situated

at B , C or D). The fourth point Z is inside △AX Y . Denote

by X ′ the point on side AD such that X X ′ ∥ AB and by Y ′

the point on side AB such that Y Y ′ ∥ AD. Also denote by O

the meeting point of X X ′ and Y Y ′.

The (some of them possibly degenerated) triangles AX X ′,
AY Y ′ and XOY together cover the triangle AX Y . Say Z lies

in △XOY ; then its symmetric Z ′ with respect to the mid-

point of X Y is contained in the rectangle ABC D. But the

quadrilateral AX Z ′Y is convex, and also contained in the

rectangle ABC D, thus by a well-known property of plane

convex bodies, its perimeter is less than that of ABC D, in

turn less than that of the original rectangle. Since Z X = Z ′Y
and Z Y = Z ′X , the perimeter of AX Z Y is equal to that of

AX Z ′Y , and we are done. The other cases, when Z lies in

△AX X ′ or △AY Y ′ (or both), are treated in a completely

similar way. This very question has also been asked in the

Juniors’ paper.
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ii) Say this triangle is ABC , with point Z inside. Then

AZC B has lesser perimeter than that of the rectangle, since

AZ + ZC < AB +BC (unless Z ≡ B , but then the other two

are eligible). So we need one more from among B ZC A and

B Z AC . Draw line B Z until it meets AC at T ; also denote

by O the midpoint of AC , and by L, ℓ, respectively Λ the

lengths of AB , BC , respectively AC , wlog with 0 < ℓ≤ L, and

of course L <Λ=
p

L2 +ℓ2 < L+ℓ.

Since B Z + ZC ≤ BT + TC and B Z + Z A ≤ BT + T A, it

is enough (and needed, since Z could be at T ) to prove

the claim for concave quadrilaterals BTC A and BT AC . Let

P1(T ) =Λ+L +TC +BT be the perimeter of BTC A, and let

P2(T ) =Λ+ℓ+T A +BT be the perimeter of BT AC . There

exists a unique point T0 on AC such that P1(T0) = P2(T0), for

T0 lying on OC when OT0 = L−ℓ

2
. We have P1(T ) ≤ P1(T0)

for T lying on T0C and P2(T ) ≤ P2(T0) for T lying on AT0, so

it is enough to prove P1(T0)+P2(T0) < 2(2L+2ℓ), writing as

2BT0 < 3(L+ℓ−Λ).

We have cos
1

2
∠BOC = L

Λ
, and so cos∠BOC = L2 −ℓ2

Λ2
.



2

By the cosine theorem

4BT 2
0 =Λ

2 + (L−ℓ)2 −2Λ(L−ℓ)
L2 −ℓ2

Λ2
.

On the other hand, (L +ℓ−Λ)2 = 2Λ2 +2Lℓ−2Λ(L +ℓ) and

(L−ℓ)2 =Λ
2 −2Lℓ, so we can write

4BT 2
0 = (L+ℓ−Λ)2 + 4Lℓ(L+ℓ−Λ)

Λ
.

The (squared) inequality thus rewrites as

L+ℓ−Λ

Λ

(

Lℓ−2Λ(L+ℓ−Λ)
)

< 0,

but 2Λ(L +ℓ−Λ) = 4ΛLℓ

L+ℓ+Λ
> Lℓ, since being equivalent

with Lℓ(3Λ−L−ℓ) > 0, obviously true. �

Remarks. The inequalities are strict, but sharp, since they

turn into equalities for ℓ→ 0. It is believed this result holds

in general, for all configurations allowed in the statement;

alas – the computations seem too hard. Maybe someone

can come up with some palatable general proof.

Problem 3. Consider the sequence (an +1)n≥1, with a > 1

a fixed integer.

i) Prove there exist infinitely many primes, each dividing

some term of the sequence.

ii) Prove there exist infinitely many primes, none dividing

any term of the sequence.

DAN SCHWARZ

Solution.

i) In a similar vein with the known relation for Fermat

numbers, we can write

a2n

+1 = (a −1)(a20

+1)(a21

+1) · · · (a2n−1

+1)+2,

hence gcd(a2n +1, a2k +1) | 2 for all 0 ≤ k < n. Since a2n +1 is

a power of 2 at best when n = 0, each term a2n +1 introduces

some new prime factor.

Alternatively, assume there are finitely many such primes.

Let M be their product. Then gcd(M , aϕ(M) + 1) | 2, since

gcd(aϕ(M) −1, aϕ(M) +1) | 2 and M | aϕ(M) −1. So aϕ(M) +1

has odd prime factors not among those of M .

Yet other alternative solution(s) could work by invoking

Euler’s criterion, the quadratic reciprocity law, or else the

theorems of Zsigmondy or Kobayashi.

ii) If p is a prime such that −1 and −a are non-quadratic

residues modulo p, then p divides no term an + 1, for any

n ≥ 1. This is since, for n = 2m, p | a2m + 1 is equivalent

to (am)2 ≡ −1 (mod p), forbidden, while for n = 2m − 1,

p | a2m−1 +1 is equivalent to (am)2 ≡ −a (mod p), also not

allowed. Assume finitely many such primes q1, q2, . . . , qk do

exist, and consider the number N = 4a(q1q2 · · ·qk )2 −1.

Clearly any prime q | N is distinct from all of them. Since

N ≡ −1 (mod 4), at least one of its prime factors is q ≡ −1

(mod 4), thus with −1 a non-quadratic residue modulo q .

On the other hand, then (2aq1q2 · · ·qk )2 ≡ a (mod q), thus

a is a quadratic residue modulo q , and so −a will be a non-

quadratic residue. This contradicts the fact that all such

primes were assumed to be contained in {q1, q2, . . . , qk }.

Other, alternative solution(s), could work by invoking the

quadratic reciprocity law. The very same conclusion on the

infinity of such primes could be obtained by some direct

application of Dirichlet’s Theorem. �

Remarks. A more palatable version, for a = 3, n 7→ 2n ,

asked in the Juniors’ paper, allows for quite more specific

solutions, due to the precision gained on the value of a.

Problem 4. Given a (fixed) positive integer N , solve the

functional equation

f : Z→R, f (2k) = 2 f (k) and f (N −k) = f (k), for all k ∈Z.

DAN SCHWARZ

Solution. The claim is the only such function is the zero

function, f (k) = 0 for all k ∈ Z, which trivially fulfills the

requirements.

Tackle first the case of odd N . Consider the following

directed graph G . Its vertices are the integers v ∈ Z. Its

edges are made by red arrows 2k→k and by blue arrows

2k +1→N − (2k +1), for all k ∈ Z. Then for each vertex, its

out-degree is exactly 1 (from an even vertex does leave a red

arrow, while from an odd vertex leaves a blue arrow). Also

define ϕ : Z→Z so that ϕ(v) is the end of the arrow starting

at v . Start now with any vertex v , and do build the unique

directed path Pv = v→ϕ(v)→ϕ(ϕ(v))→···→ϕn(v)→··· ,
given by the iterates of ϕ computed at v .

1. It is readily seen that for 1 ≤ v ≤ N − 1 we also have

1 ≤ϕ(v) ≤ N −1, so if we start with 1 ≤ v ≤ N −1, the path Pv

is contained in the induced subgraph G ′ =G∩{1,2, . . . , N−1}.

Since this graph is finite, the path will eventually reach some

vertex w already passed through, thereby creating a cycle.

Now, that means f (w) = 2r f (w), where r ≥ 1 represents the

number of red arrows in the cycle, therefore f (w) = 0. But

we also have f (v) = 2ρ f (w), where ρ ≥ 0 is the number of

red arrows in the path from vertex v to vertex w , therefore

f (v) = 0. Since clearly f (0) = 2 f (0), so f (N ) = f (0) = 0, it

follows f (v) = 0 for all 0 ≤ v ≤ N .

2. If v > N or v < 0, then
∣

∣ϕ(v)− 1
2

N
∣

∣ <
∣

∣v − 1
2

N
∣

∣ when

v is even. When v is odd, then ϕ(v) = N − v , hence
∣

∣ϕ(v)− 1
2

N
∣

∣ =
∣

∣(N − v)− 1
2

N
∣

∣ =
∣

∣v − 1
2

N
∣

∣. Since the path Pv

cannot contain two consecutive odd vertices, it follows that
∣

∣ϕ(ϕ(v))− 1
2

N
∣

∣ <
∣

∣v − 1
2

N
∣

∣. Therefore, via the principle of

infinite descent, there will be a moment when a vertex w on

the path will have
∣

∣w − 1
2

N
∣

∣≤ 1
2

N , hence 0 ≤ w ≤ N , and so

f (w) = 0. Now, that means f (v) = 2ρ f (w), where ρ > 0 is

the number of red arrows in the path from vertex v to vertex

w , therefore f (v) = 0.[1]

For even N = 2m M , with m ≥ 1 and odd M , focus on the

numbers 2m v . Let g : Z→R defined by g (x) = f (2m x). Then

g (2k) = f (2m+1k) = 2 f (2mk) = 2g (k), and g (k) = f (2mk) =
f (N − 2mk) = f (2m(M − k)) = g (M − k). Therefore we are

back to the problem case, for M instead of N and g instead

of f . Since M is odd, according with the above it follows g

is the null function, thus f is zero on the numbers 2m v , and

since for all v we have f (v) = f (2m v)/2m , it follows f is also

zero on all numbers.[2] �
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Remarks. We present a few cases for the main cycles of

the graph. Call dendrite a path ending in a vertex of some

cycle. Then we can analyze the following cases

N = 7 1→6→3→4→2→1 (with dendrite 5→2); therefore

connected;

N = 17 1→16→8→4→2→1 (with dendrites 9→8, 13→4,

15→2), and 3→14→7→10→5→12→6→3 (with last dendrite

11→6); therefore disconnected.

Lemma. Given an odd N , the dendrites are just those odd

numbers v with 1
2

N < v < N , i.e. those with 2v > N , whose

in-degrees are equal to 0.[3]

Proof. Just remove these vertices from G ′; the subjacent

undirected graph is 2-regular (with one red and one blue

edge each incident with each vertex), therefore a union of

disjoint cycles. The other vertices are connected each to one

different even vertex in some cycle, by a blue edge. �

⋆⋆⋆ END

[1] Notice the graph G ′ can be disconnected (always like this for

composite N ’s, and also for some particular prime N ’s, like

17,31, . . . ,73, . . . ,127, . . .). Can we characterize precisely when?

I guess not! as it derives from the binary structure of N .

[2] The issue now of the graph G ′ being connected or not boils

down to the connectedness of the graph for M , all the other

vertices being connected to its cycle(s) by dendrites (i.e. paths

ending in a vertex of some cycle).

[3] The structure for N = 2m M is derived from that of the odd M

factor. For example, for M = 2013 = 3·11·61, the structure of the

cycles is given by the factors 3,11,61, which are all Hamiltonian

(so all in all we will have 23−1 = 7 disjoint cycles – this is based

on a conjecture that the cycle structure for any square-free odd

number M has 2ω(M) −1 = τ(M)−1 cycles, where ω(M) is here

the number of prime factors of M and τ(M) is the number of

positive divisors of M , provided each such prime is proved to

be Hamiltonian; a related conjecture is that for such a prime p

then pm has m cycles).


