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1. Introducere

Prezentarea soluţiilor problemelor propuse la OIM 2012 Mar del Plata
(Argentina), augmentate cu comentarii. Multe dintre soluţiile care urmează
sunt culese de pe mathlinks.ro, cu clarificările şi adăugirile de rigoare (̂ın
măsura posibilităţilor – nu garantez ı̂ntotdeauna acurateţea afirmaţiilor din
unele variante).

Din acest motiv, prezentarea de faţă este păstrată ı̂n limba Engleză.

2. Day I

Problem 1. Given triangle ABC, the point J is the centre of the excircle
opposite the vertex A. This excircle is tangent to the side BC at M , and
to the lines AB and AC at K and L, respectively. The lines LM and BJ
meet at F , and the lines KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection
of the lines AG and BC. Prove that M is the midpoint of ST.

(The excircle of ABC opposite the vertex A is the circle that is tangent
to the side BC, to the ray AB beyond B, and to the ray AC beyond C.)

Evangelos Psychas - Greece

Solution. It is easy to see that ∠LFJ =
1

2
∠A and so the quadrilateral

AFJL is cyclic. But ∠JLA = 90◦ and so ∠AFJ = 90◦. Thus AB = BS,
hence MS = AK. Similarly MT = AL, but AK = AL (as tangents from a
same point), and so we are done.

For a slightly different start, let P,Q be the midpoints of MK,ML.
Clearly FP ⊥ GP and GQ ⊥ FQ so FPQG is cyclic. Thus ∠FGP =
∠FQP = ∠MQP = ∠MLK (PQ ‖ KL of course). Thus FGLK is cyclic.

Angle-chasing shows that this angle is actually
1

2
∠B, which is equal to

∠FJK and so J also lies on this circle. But A is clearly the diameter of
(JKL), so the points A,F,K, J, L,G are concyclic. �

1
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Alternative Solutions. Notice that MK and ML are parallel to the internal
bisectors of B and C respectively. Then MK ⊥ BJ , ML ⊥ CJ , so M is the
orthocentre of JFG. Since JM ⊥ BC from the tangency, and JM ⊥ FG
from the orthocentre, it follows BC ‖ FG. Now we are in a position to
prove that MF ‖ AG and MG ‖ AF with any of the methods above, or by
considering the excentres Ib, Ic, the fact that IbIc is antiparallel to BC, and
a short angle chase. With this, FMG is the medial triangle of AST and we
are done.

We angle chase on 4FBM and easily get ∠BFL =
1

2
∠A, so AFCJ

is cyclic because ∠LAJ =
1

2
∠A. Then ∠AFJ = 180◦ − ∠ALJ = 90◦, so

AS ⊥ FJ ⊥ KM , and AS ‖MG. Similarly FM ‖ AT . Since FBJ ⊥ AFS,
by symmetry F is the midpoint of AS, and similarly G is the midpoint of
AT , so FGM is the medial triangle of 4AST and M is the midpoint of ST .

You can actually prove that AMLT and AMKS are isosceles trapezia,
so SM = AK, MT = AL, AK = AL so done. Use simple trigonometry to
prove it. �

Alternative Solutions. (Computational Considerations)

[Barycentric Coordinates] Use as reference 4ABC. It is obvious
that K = (−(s − c) : s : 0), M = (0 : s − b : s − c). Also, J = (−a : b : c).
In no time one gets

G =

(
−a : b :

−as+ (s− c)b
s− b

)
.

It follows immediately that

T =

(
0 : b :

−as+ (s− c)
s− b

)
= (0 : b(s− b) : b(s− c)− as).

Normalizing, we see that T =

(
0,− b

a
, 1 +

b

a

)
, from which we quickly obtain

MT = s. Similarly, MS = s, and we are done.

[Complex Numbers] Let the excircle be the unit circle and m = 1. Then
s = 2k

k+l and t = 2l
k+l . �

Alternative Solution. (Darij Grinberg) Guess I’m hardly breaking any news
here, but the problem is pretty close to known facts.

First, replace ”excircle opposite the vertex A” by ”incircle” throughout
the problem. This doesn’t change the validity of the problem (a phenomenon
called ”extraversion”, and somewhat subtle in the cases when several excir-
cles are concerned; but in our case it’s very obvious: just rewrite the problem
in terms of triangle KLM instead of triangle ABC, and use the fact that
an algebraic-identity type problem that holds for any obtuse-angled triangle
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(with obtuse angle at a specified vertex) must also hold for any acute-angled
triangle).

”An Unlikely Concurrence” (Chapter 3, 4, page 31 in Ross Honsberger,
Episodes in Nineteenth and Twentieth Century Euclidean Geometry) now
states that the lines BJ , ML and the perpendicular from A to BJ are
concurrent. (I have switched A and B.) In other words, AF ⊥ BJ . As
a consequence, T is the reflection of A in BJ (because AF ⊥ BJ and
∠ABF = ∠FBT ). Combined with the fact that K is the reflection of M
in BJ , we see that AK = SM (since reflections leave lengths invariant).
Similarly, AL = TM . Thus, SM = AK = AL = TM (where AK = AL
is for obvious reasons). This is not an equality of directed lengths, but it
is easy to see (by reflection again) that S and T lie on different sides of M
along the line BC, so we get SM = MT as an equality of directed lengths,
and thus M is the midpoint of ST . �

Remarks. (Alexander Magazinov) I have a strong negative opinion on this
problem. I dislike the problems where simultaneously a) simple objects are
constructed quite complicatedly, b) the question is not to determine this
simple object, but to prove some property of it. In this case b) is really
annoying.

Problem 2. Let n ≥ 3 be an integer, and let a2, a3, . . . , an be positive real
numbers such that a2a3 · · · an = 1. Prove that

(1 + a2)2(1 + a3)3 · · · (1 + an)n > nn.

Angelo di Pasquale - Australia

Solution. Notice that 1 + ak =
1

k − 1
+ · · ·+ 1

k − 1︸ ︷︷ ︸
k−1 times

+ ak ≥ k k

√
ak

(k − 1)k−1
.

Therefore (1+ak)k ≥ kk

(k − 1)k−1
ak. Taking the product from k = 2 to k = n

we see that it telescopes to
n∏

k=2

(1 + ak)k ≥ nna2a3 · · · an = nn.

Equality holds if and only if ak =
1

k − 1
for all 2 ≤ k ≤ n, which is not

possible since then
n∏

k=2

ak =
1

(n− 1)!
6= 1. �
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Alternative Solutions. Actually, if we consider the functions fk : R∗+ → R∗+

given by fk(x) =
(1 + x)k

x
, then f ′k(x) =

(1 + x)k−1((k − 1)x− 1)

x2
, so fk

reaches its minimum at xk =
1

k − 1
. This proves everything, since fk(xk) =

kk

(k − 1)k−1
yields (by telescoping) that LHS is at least nna2a3 · · · an = nn,

with equality if and only if ak =
1

k − 1
for each k, when it is impossible to

have a2a3 · · · an = 1.

(Dan Schwarz) This result allows a proof by induction. Denote E(n) =
n∏

k=2

(1 + ak)k and assume as induction hypothesis that E(n) ≥ nn
n∏

k=2

ak.

The starting case is trivial for n = 2, and E(n+ 1) = E(n)(1 + an+1)n+1 ≥(
nn

n+1∏
k=2

ak

)
(1 + an+1)n+1

an+1
≥

(
nn

n+1∏
k=2

ak

)
(n+ 1)n+1

nn
= (n+ 1)n+1

n+1∏
k=2

ak,

while equality cannot occur, since all equality cases are not simultaneously
compatible. �

Alternative Solution. For k ≥ 2

(ak + 1)k ≥ kk

(k − 1)k−1
ak

is equivalent to(
k − 1

k
(ak + 1)

)k

≥ k
(
k − 1

k
(ak + 1)− 1

)
+ 1,

which is true from the well known inequality xk ≥ k(x − 1) + 1 for x ≥ 0,
which is just the Bernoully inequality (1 + (x − 1))k ≥ 1 + k(x − 1). Since
in our case the exponent k is a positive integer, it can be proved by simple
induction. For k = 1 it is true, being an identity; and (1 + (x − 1))k+1 =
(1 + (x− 1))k(1 + (x− 1)) ≥ (1 + k(x− 1))(1 + (x− 1)) = k(x− 1)2 + 1 +
(k + 1)(x− 1) ≥ 1 + (k + 1)(x− 1).

As it can be seen, the problem is related to the tangent line. �

Remarks. (Dan Schwarz) For the least eligible value n = 3 it is elementary
to find the true minimum, which is obtained at (a1, a2) = (3/2, 2/3) and

is equal to
3125

108
≈ 28.93 > 27 = 33. For n = 4 WolframAlpha offers the

minimum to be ≈ 359.68 > 256 = 44. It would be interesting to know the
true asymptotic for the minimum, and I have some hope Ilya Bogdanov will
provide one in his official solution and comments.
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Remarks (Sequel). Equivalent to find minimum of
∑

(i ln (1 + exi)) subject
to x2 + · · ·+ xn = 0. Using Lagrange multipliers on the function∑

(i ln (1 + exi))− λ(x2 + ...+ xn)

it is easy to see that the minimum occurs when i
exi

1 + ex1
= λ for each

2 ≤ i ≤ n.

This implies the minimum value occurs when ai =
λ

i− λ
. It’s not hard

to check that there’s a unique λ (via monotonicity) which makes this all
satisfy

∏
ai = 1, and the boundary cases are all trivial (unless I’ve missed

something). Anyways this λ satisfies

λn−1 =
∏

(i− λ)

and we wish to minimize ∏(
ii
)∏(

(i− λ)i
)

but I can’t think of any way to bound either λ or the product in the denom-
inator.

Here is another way of seeing that λ must be very close to 2 as n becomes
large.

First, if in i
exi

1 + exi
= λ we set i = 2, then we derive λ < 2.

Secondly, with λ < 2 the right hand side of

λn−1 =
∏

(i− λ)

is at least (2 − λ) · 1 · 2 · 3 · · · (n − 2). The left hand side is at most 2n−1.
This implies (2−λ) < 2n−1/(n−2)!. Since (n−2)! grows much much faster
than 2n−1, we conclude that 2− λ must be very close to 0.

(Alexander Magazinov) As before, under the assumption that
ai

1 + ai
=
λ

i

we have A = (1 + a2)2 · · · (1 + an)n =
2233 · · ·nn

(2− λ)2(3− λ)3 · · · (n− λ)n

Since (2− λ) · · · (n− λ) = λn−1, we have

A = nn(n− 1)n−1

(
n− 2

n− λ

)n−2

· · · 1

3− λ
· λ−2(n−1).

Further, by Bernoulli,

(
k − 2

k − λ

)k−2

≥ 1− (k − 2)(2− λ)

k − λ
≥ λ− 1.

So, A ≥ nn
(

(n − 1)n−1λ−2(n−1)(λ − 1)n−2
)

. Or, one can try a more

compact, slightly rougher estimate, namely A ≥ nn(n− 1)n−1

(
λ− 1

λ2

)n−1

.
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Problem 3. The liar’s guessing game is a game played between two
players A and B. The rules of the game depend on two positive integers k
and n which are known to both players.

At the start of the game A chooses integers x and N with 1 ≤ x ≤ N.
Player A keeps x secret, and truthfully tells N to player B. Player B now
tries to obtain information about x by asking player A questions as follows:
each question consists of B specifying an arbitrary set S of positive integers
(possibly one specified in some previous question), and asking A whether x
belongs to S. Player B may ask as many questions as he wishes. After
each question, player A must immediately answer it with YES or NO, but
is allowed to lie as many times as she wants; the only restriction is that,
among any k+ 1 consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set
X of at most n positive integers. If x belongs to X, then B wins; otherwise,
he loses. Prove that

1. If n ≥ 2k, then B can guarantee a win.
2. For all sufficiently large k, there exists an integer n ≥ 1.99k such that

B cannot guarantee a win.

David Arthur - Canada

Solution. For just part 1 (although this probably helps part 2).
First, we notice that it obviously doesn’t matter what the actual elements

that are being guessed are. So we’ll generalize the game such that A chooses
a finite set D, tells the entire set to B, and picks x ∈ D for B to guess; clearly
this game is still equivalent to the original one.

Lemma. With a fixed k and n, player B can guarantee a win for all N if
and only if B can guarantee a win for N = n+ 1.

Proof. The ”only if” part is trivial. For the ”if” part, let us use induction
on N ≥ n+ 1 (for N ≤ n just pick X = D). The starting case N = n+ 1 is
now given to be winning.

For larger N > n + 1, arbitrarily partition D into n + 1 nonempty sets
E1, E2, . . . , En+1 (they will act as n+1 ”molecules” made of initial elements,
acting as ”atoms”).
B can use his strategy for n + 1 elements on D′ := {1, 2, . . . , n + 1},

replacing each question S′ with the set S =
⋃
i∈S′

Ei. Then his strategy will

yield a subset X ′ of D′ that has size at most n, and B will know that

x ∈ X =
⋃
i∈X′

Ei. Since X ′ ( D′, we have X =
⋃
i∈X′

Ei (
⋃
i∈D′

Ei = D so

|X| < |D| = N . From here, B has a winning strategy by the induction
hypothesis. �



COMENTARII 7

Trivially, a strategy for n = 2k is also a strategy for n ≥ 2k, so we only
need to consider n = 2k, and by the lemma we only have to consider the
case N = 2k + 1. Now all B needs to win is to know one element d ∈ D that
cannot be x.

Identify each element of D with a binary string of length k, with one
extra element e left over. Let Si be the set of elements of D corresponding
to binary strings with 0 in the i-th position.

First, B asks the questions S1, S2, . . . , Sk. Let ai = 0 if A answers x ∈ Si,
and ai = 1 otherwise. Take the binary digit ai = (1 − ai). Now, let wi be
the element in D corresponding to the binary word a1a2 . . . aiai+1ai+2 . . . ak
for i = 0, 1, . . . , k. B next asks the questions {w0}, {w1}, . . . , {wk} in order.

If A answers at least once that x 6= wi, let j be the smallest nonnegative
integer for which A answers this. Then if x = wj , A will have lied for the k+1
consecutive questions Sj+1, Sj+2, . . . , Sk, {w0}, {w1}, . . . , {wj}. Therefore B
knows that x 6= wj and he wins.

If A always answers that x = wi, then if x = e it means A will have lied
for k + 1 consecutive questions {w0}, {w1}, . . . , {wk}. Therefore B knows
that x 6= e and he again wins. �

3. Day II

Problem 4. Find all functions f : Z → Z such that, for all integers a, b, c
that satisfy a+ b+ c = 0, the following equality holds

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).

Liam Baker - South Africa

Solution. (Dan Schwarz) I will try to put some order and method into solving
this problem, since all other solutions I’ve seen are either flawed, or else sway
allover the place.

We immediately get, like everybody else does, f(0) = 0, and also the
completely equivalent form(

f(a) + f(b)− f(−a− b)
)2

= 4f(a)f(b).

For b = 0 we get f(a) = f(−a) (so f is an even function). Our relation,
liberally used in the sequel, writes now(

f(a+ b)− f(a)− f(b)
)2

= 4f(a)f(b).

Clearly, if f(1) = 0, having (f(a + 1) − f(a) − f(1))2 = 4f(a)f(1) = 0

yields f(a+ 1) = f(a) for all a, hence f ≡ 0 (which trivially verifies).

Assume therefore f(1) 6= 0. If f(k) = k2f(1) for all integers k, this

clearly provides a solution, easily verified. Since f(k) = k2f(1) is true for
k = 1, assume then f(k) = k2f(1) for all 1 ≤ k ≤ m, but not for k = m+ 1.
We do have (f(m+ 1)− f(m)− f(1))2 = 4f(m)f(1), yielding (f(m+ 1)−
(m2 + 1)f(1))2 = 4m2f(1)2, whence f(m + 1) = (m2 + 1)f(1) − 2mf(1) =
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(m − 1)2f(1) (the other possibility, f(m + 1) = (m2 + 1)f(1) + 2mf(1) =
(m+ 1)2f(1), is ruled out by our assumption this formula does not continue
for k = m+ 1).

Now, on one hand (f(2m)−f(m)−f(m))2 = 4f(m)f(m) yields (f(2m)−
2m2f(1))2 = 4m4f(1)2, leading to

f(2m)(f(2m)− 4m2f(1)) = 0,

while on the other hand (f(2m)−f(m+1)−f(m−1))2 = 4f(m+1)f(m−1)
yields (f(2m)− 2(m− 1)2f(1))2 = 4(m− 1)4f(1)2, leading to

f(2m)(f(2m)− 4(m− 1)2f(1)) = 0.

The only possibility to satisfy both relations is f(2m) = 0. This implies
(f(n+ 2m)− f(n)− f(2m))2 = 4f(n)f(2m) = 0, forcing f(n+ 2m) = f(n)
for all n ∈ Z, thus f is periodic of period length 2m. Then

f(m+ k) = f((m+ k)− 2m) = f(−(m− k)) = f(m− k) = (m− k)2f(1)

for all 1 ≤ k ≤ m.
This offers a solution, both for m = 1 (when f(n) = 0 for n ≡ 0 (mod 2),

and f(n) = f(1) for n ≡ 1 (mod 2)) and for m = 2 (when f(n) = 0 for
n ≡ 0 (mod 4), f(n) = f(1) for n ≡ 1, 3 (mod 4), and f(n) = 4f(1) for
n ≡ 2 (mod 4)), as is immediately verified by what just has been proved in
the above.

Let us finally prove that for m > 2 we get a contradiction. Indeed,
then (f(m + 1) − f(m − 1) − f(2))2 = 4f(m − 1)f(2) yields (4f(1))2 =
16(m− 1)2f(1)2, whence (m− 1)2 = 1, absurd. �

Problem 5. Let ABC be a triangle with ∠BCA = 90◦, and let D be the
foot of the altitude from C. Let X be a point in the interior of the segment
CD. Let K be the point on the segment AX such that BK = BC. Similarly,
let L be the point on the segment BX such that AL = AC. Let M be the
point of intersection of AL and BK. Show that MK = ML.

Josef ”Pepa” Tkadlec - Czech Republic

Solution. AL2 = AD ·AB; then ∠ALD = ∠LBA and a tangent to circum-
circles is obvious.

Let F be the intersection of CD and the perpendicular to AL through L;
then FLDA is cyclic and ∠DFA = ∠DLA = ∠LBA.

Let T be the intersection of BX with AF ; then BFTD is cyclic, and X
is orthocentre, with AX perpendicular to BF .

In a similar way, the perpendicular for BK through K passes through F ,
and with similar triangles we can prove that LF = KF ; then the circum-
circle of LKF is tangent to LM and KM , and so M is the radical center,
thus finish. �

Alternative Solutions. MK and ML are both tangents to a circle. Let BX
meet the circle (A,AC) at J and AX meet the circle (B,BC) at I. Easily
we can find that JKLI is cyclic, and easily we can find that BK is tangent
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to that circle (because we have BC ·BC = BI ·BJ , and we have BC = BK,
so BK · BK = BL · BJ). Similarly we can see that AL is tangent to the
circle too. So MK and ML are both tangents to the circle, so MK = ML.

Obviously the perpendiculars through K,L and to BK,CL intersect at
a point E which lies on CD, which is also the intersection of �BDK and
�CDL. So, by some angle chasing, it follows that ∠EKD = ∠AXE, this
meaning that EK is tangent to �KDX. So, by the power of the point E, it
follows that EK2 = ED ·EX = EL2, because EL is also tangent to �LDX.
Therefore EK = EL, and MKE ∼= MLE, leading to MK = ML. �

Alternative Solution. [Analytical] (Pavel Kozlov)
Let us introduce carthesian coordinates D(0, 0), A(−a, 0), B(b, 0), X(0, d).

So the point C has coordinates (0,
√
ab). Suppose the points L and K have

coordinates (xL, yL) and (xK , yK) respectively. The point L lies on the line
BX given by equation y = d−xd

b and on the circle with the center A(−a, 0)

and radius |AC| =
√
a2 + ab given by equation (x + a)2 + y2 = a2 + ab.

Then it’s easy to see that xL is positive root of the quadratic equation
(x + a)2 + (d − xd

b )2 − a2 − ab = 0. Accurate calculation give us the next

relation xL = b
√

Πb−(ab−d2)
b2+d2

, where Π = (ab − d2)(a + b) is symmetrical

with respect to a, b. Hence yL = d − xL
d
b = d b2+ab−

√
Πb

b2+d2
. Analogously

xK = −a
√

Πa−(ab−d2)
a2+d2

, yK = da2+ab−
√

Πa
a2+d2

.
So, we are already have some roots and fractions, and it’s quite impractical

to involve the point M in our calculations. We exclude it with help of the
sine’s theorem.

From the triangles AKM and BLM we get KM
AK = sin∠KAM

sin∠KMA and LM
BL =

sin∠LBK
sin∠LNB therefore KM

LM = AK
BL

sin∠KAL
sin∠LBK .

To exlude angles we apply the sine’s theorem to the triangles AXL and
BXK: XL

AL = sin∠KAL
sin∠AXB and XK

BK = sin∠LBK
sin∠BXA therefore sin∠KAL

sin∠LBK = XL
XK

BK
AL .

Combining the last identities of last two subparagraphs we get KM
LM =

AK
BL

XL
XK

BK
AL = AK

XK
XL
BL

BC
AC .

Let’s calculate the first fraction: AX
XK = xK+a

−xK
=

a2+ab−
√

(ab−d2)((a2+ab)√
(ab−d2)(a2+ab)−(ab−d2)

=
√
a2+ab (

√
a2+ab−

√
ab−d2)√

ab−d2 (
√
a2+ab−

√
ab−d2)

=
√

a2+ab
ab−d2 . In the same way we conclude XL

BL =√
ab−d2
b2+ab

. Taken evident relation BC
AC =

√
b2+ab
a2+ab

into account we finally get

KM
LM =

√
a2+ab
ab−d2

√
ab−d2
b2+ab

√
b2+ab
a2+ab

= 1.

P.S. This solution lets deduce that the foot of the angle bisector of ∠ACB
lies on the line XM . �

Remarks. Another addition to this problem. Prove the angle bisector of
∠ACB and the lines XM and AB meet each other at one point.
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Problem 6. Find all positive integers n for which there exist non-negative
integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.

Dusan Djukic - Serbia

Solution. We do need

n∑
k=1

k

3ak
≡

n∑
k=1

k =
n(n+ 1)

2
≡ 1 (mod 2), whence-

forth n ≡ 1 or 2 (mod 4) , and we will show all of them are in fact eligible,

by strong induction. Before the inductive part though, we shall introduce
two types of ”substitution”, as follows

S1 : 1
2ak = 1

2ak+1 + 1
2ak+1

and k
3ak = k

3ak+1 + 2k
3ak+1 .

S2 : 1
2ak = 1

2ak+2 + 1
2ak+3 + 1

2ak+3 + 1
2ak+3 + 1

2ak+3 + 1
2ak+3 + 1

2ak+3

and k
3ak = k

3ak+2 + 4k−5
3ak+3 + 4k−3

3ak+3 + 4k−1
3ak+3 + 4k+1

3ak+3 + 4k+3
3ak+3 + 4k+5

3ak+3 .

Starting from the base cases n = 1, 5, 9, which can be easily found

n = 1 : 1
1 = 1

1 = 1

n = 5 : 1
4 + 1

4 + 1
4 + 1

8 + 1
8 = 1

9 + 2
9 + 3

9 + 4
27 + 5

27 = 1

n = 9 : 1
4 + 1

8 + 1
8 + 1

8 + 1
8 + 1

16 + 1
16 + 1

16 + 1
16 =

1
9 + 2

27 + 3
27 + 4

27 + 5
27 + 6

81 + 7
81 + 8

81 + 9
81 = 1

we will show that
a) n = 4m + 1 7→ n = 4m + 2. Simply do the first substitution once (by

taking k = 2m+ 1).
b) n = 4m+ 2 7→ n = 4(m+ 3) + 1. First we do the second substitution

(by taking k = m+ 2); after that we apply the first substitution repeatedly
(by taking k = 2m+ 2, 2m+ 3, 2m+ 4, 2m+ 5, 2m+ 6).

The proof is complete by induction hypothesis. �

4. Încheiere

Problema 1 este o uşoară problemă de geometrie sintetică – nimic rău
cu asta! Problema 2 este o inegalitate cu o margine extrem de proastă ca
acurateţe, şi care sucumbă imediat la ”trucul” cu inegalitatea ponderată a
mediilor, sau cu metode (mai mult sau mai puţin) analitice, legate de funcţia

f(x) =
(1 + x)k

x
. Era mai potrivită ca problemă 4. Problema 4 conţine o

analiză delicată (dar fundamental simplă), unde dificultatea este ı̂n eleganţa
şi claritatea unei expuneri unde niciun caz nu este pierdut, iar toate cazurile
parazite sunt eliminate. Era mai potrivită ca problemă 2. Problema 5 este
o problemă de geometrie sintetică mai dificilă, care a produs ı̂nsă mai multe
accidente decât se putea prevedea (̂ın plus, există şi soluţii analitice, ceea ce
o cam strică puţin).
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Problema 6 nu ı̂şi merită locul. Nu o consider o problemă de Teoria
Numerelor, ci de elementară Aritmetică, şi orice soluţie va recurge la găsirea
unor identităţi (plicticoase) implicând puteri negative ale lui 2 şi 3. Un
exerciţiu fără ı̂nsemnătate (comparaţi de exemplu cu implicaţiile pline de
miez ale teoremei Zeckendorf, relativă la reprezentări ca sume de numere
Fibonacci).

Problema 3 este problema Olimpiadei! probabil merită un articol separat
pentru ea ı̂nsăşi (a fost de altfel aleasă de Terence Tao pentru discuţie ı̂n
proiectul PolyMath). De aceea nu am insistat prea mult, şi nici măcar nu am
atins punctul 2), unde sunt multe ı̂ntrebări legate de cea mai bună margine
care poate fi demonstrată.


