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Problem 1. Prove there exist infinitely many pairs (x, y)

of integers 1 < x < y , such that x3 + y | x + y3.
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Solution. Let us then try to find solutions with y = kx,

where k > 1 is integer. We then need x2 + k | 1 + k3x2 =

1+ x2((x2)3 +k3)− x8, thus x2 +k | x8 −1. We therefore see

(x, y) = (m,m(m8
−m2

−1)) will be solutions, and this for

any integer m > 1.

Alternatively, looking at P (y) = y3+x as some polynomial

P ∈Z[y], by the Euclidean division algorithm we have

P (y) = (y +x3)(y2
− y x3

+x6)− (x9
−x).

It is then enough to take x > 1 and

y = (x9
−x)−x3

= x(x8
−x2

−1).

Thus in fact we find (at least) a solution for each x > 1. �

Remarks. For all exponents n > 1 (rather than just n = 3)

the question has been also asked in the Seniors Section.

Problem 2. Determine all integers n ≥ 1 for which the

numbers 1,2, . . . ,n may be ordered as a1, a2, . . . , an , in such

a way that the average
a1 +a2 +·· ·+ak

k
is an integer for all

values 1 ≤ k ≤ n.
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Solution. We claim it can only be done for n ∈ {1,3} ,

with (a1, a2, a3) = (1,3,2) when n = 3. It clearly cannot be

done for n = 2, so assume in the sequel that n > 3.

Denote sk = a1 +a2+·· ·+ak ; then n must divide the sum

sn =
n(n +1)

2
, forcing n to be odd. Now n − 1 must divide

the sum sn−1 = sn − an =
n(n +1)

2
− an , therefore we must

have 2(n −1) | n(n +1)−2an , so n −1 | 2(an −1). There are

only three possibilities

• an = 1, but then 2(n −1) ∤ n(n +1)−2an = (n +2)(n −1),

since n +2 is odd;

• an = n, but then 2(n−1) ∤ n(n+1)−2an = n(n−1), since

n is odd;

• an =
n +1

2
, and so 2(n−1) | n(n+1)−2an = (n+1)(n−1),

since n +1 is even. Now n −2 must in turn divide the sum

sn−2 = sn−1−an−1 =
(n +1)(n −1)

2
−an−1, therefore we must

have 2(n−2) | (n+1)(n−1)−2an−1, so n−2 | 2an−1−3. There

exists only one possibility, namely an−1 =
n +1

2
, but that is

unavailable, since the value is already used by an . �

Remarks. It is however possible for the (infinitely many)

numbers 1,2, . . . ,n, . . . to be ordered as a1, a2, . . . , an , . . ., in

such a way that the sum a1 + a2 + ·· · + ak is divisible by k

for all integers 1 ≤ k. This is a quite classical result, and I

encourage those not knowing it already to strive to prove it.

The proof involves an elegant use of the Chinese Remainder

Theorem, as opposed to some cumbersome application of

a greedy algorithm.

Problem 3.

i) Show there exist (not necessarily distinct) non-negative

real numbers a1, a2, . . . , a10; b1,b2, . . . ,b10, with ak + bk ≤ 4

for all 1 ≤ k ≤ 10, such that max{|ai − a j |, |bi −b j |} ≥
4/3 > 1

for all 1 ≤ i < j ≤ 10.

ii) Prove for any (not necessarily distinct) non-negative

real numbers a1, a2, . . . , a11; b1,b2, . . . ,b11, with ak + bk ≤ 4

for all 1 ≤ k ≤ 11, there exist 1 ≤ i < j ≤ 11 such that

max{|ai −a j |, |bi −b j |} ≤ 1.
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Figure courtesy of ANDREI ECKSTEIN.

Solution. Consider the pairs (ak ,bk ) as coordinates for

points pk (ak ,bk ) inside (or on the border) of △OAB of

vertices O(0,0), A(4,0), B(0,4); notice now that we have

max{|ai −a j |, |bi −b j |} = ‖pi −p j ‖∞, the "distance" between

pi and p j in the metric determined by the maximum norm

‖(x, y)‖∞ := max{|x|, |y |} in the space R
2. This allows for a

clearer visualization of the ideas in the proof.

i) Just consider the 10 points (marked in red) O(0,0) and

(4/3,0), (0, 4/3), (8/3,0), (4/3, 4/3), (0, 8/3), A(4,0), (8/3, 4/3), (4/3, 8/3),B(0,4).

The least "distance" between any two of them is 4/3 > 1. The

model presented is in fact unique.

ii) Consider the 10 regions into which the vertical lines

x = 1, x = 2, x = 3 and the horizontal lines y = 1, y = 2, y = 3

partition the triangle OAB . By the pigeonhole principle, two

of the 11 points will lie inside (or on the border) of a same

region, and as such, the "distance" between them will be at

most 1 (in fact a total of 15 points (the vertices of the above

regions) may such be taken). �

Remarks. Similar problems may be construed instead

with ‖(x, y)‖1 := |x|+ |y |, the taxicab (or Manhattan) norm.

The knowledge of these equivalent – to the Euclidean

‖(x, y)‖2 :=
√

x2 + y2 – norms is important and interesting

in itself, and I urge you to read the pertinent textbook(s).

Problem 4. At a point on the real line sits a greyhound.

On one of the sides a hare runs, away from the hound. The

only thing known is that the (maximal) speed of the hare is

strictly less than the (maximal) speed of the greyhound (but

not their precise ratio). Does the greyhound have a strategy

for catching the hare in a finite amount of time?
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Solution. Let us start by making several notations to-

wards describing the steps Φ1,Φ2, . . . ,Φn , . . . of a strategy Φ,

which within a finite amount of time will allow the grey-

hound to catch the hare. For this, we will introduce some

notations and concepts.

Take as origin the point where the greyhound initially sits,

g1 = 0 and h0 = d > 0 (the distances from the origin of the

greyhound, respectively hare, at the moment in time T1 = 0).

Denote the speed of the greyhound by g (thus the speed h

of the hare is so that 0 ≤ h < g , but h/g < 1 is unknown).

Denote the two rays emanating from the origin as roads r (1)

and r (2).

Consider the function r : N∗ → {1,2} given by r (n) = 1 if

n−1 is even and r (n) = 2 if n−1 is odd, thus the fibre r−1(k)

is infinite for each 1 ≤ k ≤ 2. We will now describe step Φn .

• Step Φn applies at the moment in time Tn .

•Compute hn = n+g

(

1−
1

n

)

Tn , the largest distance from

origin the hare could have achieved at the moment in time

Tn , for d ≤ n and h ≤ g

(

1−
1

n

)

.

• Compute tn =
gn +hn

g /n
, the largest time needed by the

greyhound to run back to origin, then pick the road r (n) and

catch the hare (if it was on this road) under the conditions

of the above.

• Finally define Tn+1 = Tn + tn , and gn+1 = g tn − gn (the

distance of the greyhound from origin at the end of stepΦn).

All it is left to do is notice that the steps of the strategy

are correctly defined, and since the number n increases by 1

with each step of the strategy, at some moment in time it will

become large enough so that simultaneously we get to have

n ≥ d and n ≥
g

g −h
, which is equivalent to h ≤ g

(

1−
1

n

)

,

and also that r (n) is the very road on which the hare runs,

hence the hare will be caught. �

Remarks. The same question was asked, for a countably

infinite number of roads, in the Seniors Section.

A similarly flavoured question – but simpler in all extents

(only two roads; known ratio of speeds) – has been asked a

few years ago in the Russian Olympiad.

From a police station situated on a straight

road, infinite in both directions, a thief has

stolen a police car. Its maximal speed equals

90% of the maximal speed of a police cruiser.

When the theft is discovered some time later,

a policeman engages to pursue the thief on a

cruiser. However, he does not know in which

direction along the road the thief has gone, nor

does he know how long ago the car has been

stolen. Is it possible for the policeman to catch

the thief?

⋆⋆⋆ END


