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Problem 1. Prove that for any integer n > 1 there exist

infinitely many pairs (x, y) of integers 1 < x < y , such that

xn + y | x + yn .

DAN SCHWARZ

Solution. Let us then try to find solutions with y = kx,

where k > 1 is integer. We then need xn−1 +k | 1+kn xn−1.

When n is odd we can take xn−1 +k | (xn−1)n +kn , and so

xn−1 +k | 1+kn xn−1 = 1+ xn−1
(

(xn−1)n +kn
)

− xn2−1, thus

xn−1+k | xn2−1−1. We see (x, y) = (m,m(mn2−1−mn−1−1))

will thus be solutions for any integer m > 1.

When n is even we can take xn−1+k | (xn−1)n −kn , and so

xn−1 +k | 1+kn xn−1 = 1− xn−1
(

(xn−1)n −kn
)

+ xn2−1, thus

xn−1+k | xn2−1+1. We see (x, y) = (m,m(mn2−1−mn−1+1))

will thus be solutions for any integer m > 1.

We may in fact unify these above results, by claiming

(x, y) = (m,m(mn2−1
−mn−1

+ (−1)n)) will be solutions for

any integer m > 1.

Alternatively, looking at P (y) = yn+x as some polynomial

P ∈Z[y], by the Euclidean division algorithm we have

P (y) = (y +xn)Q(y)+P (−xn ).

It is then enough to take x > 1 and

y = |P (−xn)|−xn
= xn2

−xn
+ (−1)n x.

Even more complex polynomials may be similarly done. �

Remarks. For just the value n = 3 the problem has been

also asked in the Juniors Section.

Problem 2. Let N be an arbitrary positive integer. Prove

that if, from among any n consecutive integers larger than

N , one may select 7 of them, pairwise co-prime, then n ≥ 22.

DAN SCHWARZ

Solution. A model (that shows the value n = 21 is too

small) may be exhibited by taking a = 210k + 199, k ∈ N,

and the set A = {a + 1, a + 2, . . . , a + 21}. Then we may take

A2 = {a +1, a +3, . . . , a +21}, A3 = {a +2, a +8, a +14, a +20},

A5 = {a + 6, a + 16}, A7 = {a + 4, a + 18}, A′ = {a + 10},

A′′ = {a +12}, such that the elements in Ap are divisible by

p, for p ∈ {2,3,5,7}. Since these 6 subsets of above will make

up a partition of A, it means, by the pigeonhole principle,

that for any selection of 7 elements from A there will be 2

belonging to a same Ap , hence not co-prime.

The idea behind all this is to try to bunch together as

many multiples of 2, 3, 5 and/or 7 (the smallest primes) as

possible, in order for the pigeonhole principle to readily be

applied. After playing around a bit, we should come up with

sets A2, A3, A5, A7, A′, A′′; now it is left to find an a such that

the elements in Ap are divisible by p for p ∈ {2,3,5,7}, i.e.

to solve the system of congruences a ≡−1 (mod 2), a ≡−2

(mod 3), a ≡ −6 (mod 5), a ≡ −4 (mod 7). The least such

positive solution (warranted to exist by CRT – the Chinese

Remainder Theorem) is a = 199, gotten without too large an

effort. We may rewrite a ≡−1(mod 10), so a = 10b −1, then

10b − 1 ≡ 1(mod 3), or b ≡ 2(mod 3), so b = 3c + 2, finally

30c +19 ≡ −4(mod 7), or c ≡ −1(mod 7), so c = 7d −1, and

so a = 210d −11 = 210k +199, k ∈N. The model obtained is

almost unique in its simplicity. �

Remarks. Notice that the model for n = 21 is too high

to just be "guessed"; it rather needs to be inferred via some

deductive reasoning. It may be proved that in fact for n = 22

one may always make such a selection, thus value 22 is the

threshold value. However, the reasoning is a little tiresome,

and based on some amount of casework, so it is not quite

recommending itself for being asked.

Problem 3. Let positive integers M , m, n be such that

1 ≤ m ≤ n, 1 ≤ M ≤
m(m +1)

2
, and let A ⊆ {1,2, . . . ,n} with

|A| = m. Prove there exists a subset B ⊆ A with

0 ≤
∑

b∈B

b −M ≤ n −m.

DAN SCHWARZ

Solution. Let A = {a1, a2, . . . , am}, where

a0 = 0 < 1 ≤ a1 < a2 < ·· · < am ≤ n.

Since ak ≥ k for all 1 ≤ k ≤ m, it follows that

a1 +a2 +·· ·+am ≥
m(m +1)

2
≥ M ,

therefore the family of the subsets B = {ak1
, ak2

, . . . , akℓ
} that

have
∑

b∈B

b ≥ M is non-empty. Consider now such a subset B

with
∑

b∈B

b−M minimal. Then 0 ≤
∑

b∈B

b−M ≤ ak1
−ak1−1−1,

by dint of the minimality of B , since otherwise the new set

B ′ = (B ∪ {ak1−1}) \ {0, ak1
} has the property

0 ≤
∑

b′∈B ′

b′
−M <

∑

b∈B

b −M .

On the other hand, ak1
− ak1−1 − 1 ≤ n − m, from the fact

that the distance between two elements of A ∪ {a0} bearing

consecutive indices is at most n −m +1, since

n ≥ am =

m
∑

ℓ=1

(aℓ−aℓ−1) ≥ (m −1)+ (ak −ak−1)

for any 1 ≤ k ≤ m. �

Remarks. The right side inequality
∑

b∈B

b−M ≤ n−m may

easily become an equality – for example when M = 1 and

A = {n −m +1,n −m +2, . . . ,n}, B = {n −m +1}. Other such

cases may occur; see below.

The problem might have been formulated for just the

value M =
m(m +1)

2
, but that is a little unfair, as it puts

some emphasis on this particular value of M , which is in

fact irrelevant to the proof. Then the inequality on the right

side
∑

b∈B

b−
m(m +1)

2
≤ n−m may become an equality – for

m = n (obvious, forcing B = A = {1,2, . . . ,n}), or for m = 1 (if

taking B = A = {n}). Other such cases may occur, such as for

example n = 4, m = 3, with A = {1,3,4}, B = {3,4}.

This problem turns to be a (major) improvement on some

older (and weaker) attempt (from a different author), at

some previous Viitori-Olimpici competition.
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Problem 4. At the junction of some countably infinite

number of roads sits a greyhound. On one of the roads a

hare runs, away from the junction. The only thing known

is that the (maximal) speed of the hare is strictly less than

the (maximal) speed of the greyhound (but not their precise

ratio). Does the greyhound have a strategy for catching the

hare in a finite amount of time?

DAN SCHWARZ

Solution. Let us start by making several notations to-

wards describing the steps Φ1,Φ2, . . . ,Φn , . . . of a strategy Φ,

which within a finite amount of time will allow the grey-

hound to catch the hare. Take as origin the junction point,

g1 = 0 and h0 = d > 0 (the distances of the greyhound, re-

spectively hare, from origin at the moment in time T1 = 0).

Denote the speed of the greyhound by g (thus the speed h

of the hare is so that h < g , but g −h is unknown).

Consider a function r : N∗ →N
∗ such that the fibre r−1(k)

is infinite for each k ∈N
∗. Then, for any K , each fibre r−1(k)

will contain numbers larger than K . Such a function r is for

example r (n) = ω(n), the arithmetic function counting the

number of distinct primes in the factorization of n (with just

redefining r (1) = 1). We will now describe step Φn .

• Step Φn applies at the moment in time Tn .

•Compute hn = n+g

(

1−
1

n

)

Tn , the largest distance from

origin the hare could have achieved at the moment in time

Tn , for d ≤ n and h ≤ g

(

1−
1

n

)

.

• Compute tn =
gn +hn

g /n
, the largest time needed by the

greyhound to run back to origin, then pick the road r (n) and

catch the hare (if it was on this road) under the conditions

of the above.

• Finally define Tn+1 = Tn + tn , and gn+1 = g tn − gn (the

distance of the greyhound from origin at the end of stepΦn).

All it is left to do is notice that the steps of the strategy

are correctly defined, and since the number n increases by 1

with each step of the strategy, at some moment in time it will

become large enough so that simultaneously we get to have

n ≥ d and n ≥
g

g −h
, which is equivalent to h ≤ g

(

1−
1

n

)

,

and also that r (n) is the very road on which the hare runs,

hence the hare will be caught. �

Remarks. The same question was asked, for only a couple

of roads, in the Juniors Section.

A similarly flavoured question – but simpler in all extents

(only two roads; known ratio of speeds) – has been asked a

few years ago in the Russian Olympiad.

From a police station situated on a straight

road, infinite in both directions, a thief has

stolen a police car. Its maximal speed equals

90% of the maximal speed of a police cruiser.

When the theft is discovered some time later,

a policeman engages to pursue the thief on a

cruiser. However, he does not know in which

direction along the road the thief has gone, nor

does he know how long ago the car has been

stolen. Is it possible for the policeman to catch

the thief?

⋆⋆⋆ END


