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In this paper, we present a very often met and useful method used in solving
many olympiad number theory problems. This article presents the basic and
advanced theory, while also providing some examples (with solutions) and
exercises with hints.
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§1 Introduction

§1.1 Quadratic Congruences

Firstly, we need to define the following terms.

Definition 1.1. We call x a quadratic residue modulo n if there exists an integer y
such that x ≡ y2 (mod n). Otherwise x is called a quadratic nonresidue modulo n.

The following theorem shows the exact probability of an integer to be a quadratic
residue modulo a prime.

Theorem 1.2

Let p be an odd prime and A = {1, 2, 3, ..., p − 1}. Then, in the set A, there are
exactly p−1

2 quadratic residues modulo p and p−1
2 quadratic nonresidues modulo p.

Proof. Consider the set B = {12, 22, 32, ..., (p − 1)2}. We claim that every quadratic
residue modulo p is congruent to at least one element from B. Let n be a quadratic
residue modulo p. It is obvious that (n mod p)2 ∈ B, because (n mod p) ∈ A, thus our
claim is proven.

Moving on, our second claim is that x2 ≡ (p − x)2 (mod p) ∀n ∈ A and @ a, b ∈
A, a+b 6= p such that a2 6≡ b2 (mod p). The first one is obvious. To prove the second one,
suppose that there exist some numbers a, b ∈ A such that a+ b 6= p and a2 6≡ b2 (mod p).
Then p | a2 − b2 = (a− b)(a + b), but −p < a− b < p ⇒ ((a− b)(a + b), p) = 1, which
yields a contradiction.

With both claims proven, the conclusion immediately follows.

§1.2 Legendre Symbol

Definition 1.3. Let p be an odd prime number and n an integer. The Legendre Sym-

bol is a function defined as

(
n

p

)
=


−1 if n is a quadratic nonresidue modulo p,

0 if p divides n,

1 if n is a quadratic residue modulo p and p - n.

The following is a table of values of

(
k

n

)
with n ≤ 19, k ≤ 20, n odd prime.

Consider p an odd prime. Then the following statements are true:
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(i)

(
n2

p

)
= 1, ∀n ∈ Z, p - n.

(ii) If a ≡ b (mod p), then

(
a

p

)
=

(
b

p

)
.

(iii)

(
ab

p

)
=

(
a

p

)(
b

p

)
, ∀a, b ∈ Z.

(iv)

(
−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

(v)

(
2

p

)
= (−1)

p2−1
8 =

{
1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).

(vi) (Euler’s criterion) n
p−1
2 ≡

(
n

p

)
(mod p), ∀n ∈ Z.

The properties stated above aren’t quite enough for us to be able to compute the
Legendre Symbol, but the following theorem will do the trick.

Theorem 1.4 (Law of Quadratic Reciprocity)

Let p and q be some different odd primes. Then

(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

Try to prove this theorem using the following lemma as a practice problem.

Lemma 1.5 (Gauss)

Let p and q be two different odd primes. Define fq(p) =
∑ q−1

2
k=1b

kp
q c. Then

fp(q) + fq(p) =
p− 1

2
· q − 1

2
.

§1.3 Computational Example

We stated the previous properties, including the Law of Quadratic Reciprocity, and
now we’ll give an example of how to compute the Legendre Symbol for big numbers. We

want to calculate

(
12345

331

)
.(

12345

331

)
=

(
3

331

)(
5

331

)(
823

331

)
=

(
3

331

)(
5

331

)(
161

331

)
=

(
3

331

)(
5

331

)(
7

331

)(
23

331

)
= (−1)

(
331

3

)(
331

5

)
(−1)

(
331

7

)
(−1)

(
331

23

)
=

(
1

3

)(
1

5

)(
2

7

)(
9

23

)
= −

(
2

7

)
= −(−1)

72−1
8 = −1.
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Or a more efficient method:(
12345

331

)
=

(
12345− 37 · 331

331

)
=

(
98

331

)
=

(
2 · 72

331

)
=

(
2

331

)
= (−1)

3312−1
8 = −1.

§2 Examples

Now that you know how to compute the Legendre Symbol, we can proceed to solve some
problems and lemmas.

Lemma 2.1 (Very Useful)

Let a and b be two integers and p a prime such that p | a2 + b2 and p ≡ 3 (mod 4).
Show that p | a and p | b.

Proof. At the base of most number theory problems which can be solved using the
Legendre Symbol are the obvious properties (i) and (ii). Let’s start our proof by
assuming that p - a, which also means that p - b.

p | a2 + b2 ⇔ a2 ≡ −b2 (mod p)⇒
(
a2

p

)
=

(
−b2

p

)
⇔
(
−1

p

)
= 1.

According to (iv), we have that p ≡ 1 (mod 4), which yields a contradiction. Thus we
can conclude that p | a and p | b.

Now that you have seen how a problem can be approached with this method, try to
solve the next lemma, which is very similar to the first one.

Lemma 2.2 (Very Useful)

Let a and b be two integers and p a prime such that p | a2 + ab+ b2 and p ≡ 2 (mod
3). Prove that p | a and p | b.

The next problem is a perfect example of usage of the first two lemmas.

Example 2.3

If n is an integer, then n4− n2 + 1 has only nonnegative divisors of the form 12k + 1.

Proof. Its easy to see that n4−n2 + 1 = (n2− 1)2 +n2 and n4−n2 + 1 = (n2 + 1)2− 3n2.
Bearing in mind the first two exercises, from the first relation we get that p ≡ 1 (mod 4),
while from the second one we get that p ≡ ±1 (mod 12). Thus the conclusion follows.

Example 2.4 (Strengthening of Iran TST 2013)

Prove that there are no positive integers a, b, and c for which a2+b2+c2

3(ab+bc+ca) is an integer.

Proof. Suppose there exist four positive integers a, b, c, and n such that a2 + b2 + c2 =
3n(ab + bc + ca). WLOG1, consider that (a, b, c) = 1. This can be rewritten as

(a + b + c)2 = (3n + 2)(ab + bc + ca).

1Without loss of generality
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It is not difficult to see that 3n + 2 has a prime divisor p ≡ 2 (mod 3) such that
2m + 1 = vp(3n + 2) is2 odd. Then

p2m+1 | (a + b + c)2 ⇒ p2m+2 | (a + b + c)2 ⇒ p | ab + bc + ca.

Substituting c ≡ −a− b (mod p) in the previous relation, we obtain that p | a2 + ab + b2.
According to Lemma 2.2, p | a and p | b, which results in p | c, but (a, b, c) = 1. This
yields a contradiction, therefore there are no such numbers.

The following problem was created by us and it was inspired from a problem from the
Romanian Mathematical Olympiad.

Example 2.5 (Andrei Tiberiu Pantea, Nguyen Tran Bach)

Let (an)n≥1 be an arithmetic progression of positive integers and Sn = a21+a22+ +a2n,
n ∈ N∗. Prove that for all prime numbers p ≥ 5 such that p ≡ 5 or 7 (mod 12), Sp

isn’t a perfect square.

Proof. First of all, we want to write Sp as simply as possible. Because p ≥ 5, we have
that p is odd. So denote a p−1

2
= a and the ratio of the arithmetic progression by r. Now,

Sp = (a− p−1
2 r)2 + (a− p−3

2 r)2 + · · ·+ a2 + · · ·+ (a + p−1
2 r)2

Sp = pa2 + 2(12 + 22 + · · ·+ (p−12 )2)r2

Sp = pa2 + 2
p−1
2
· p+1

2
·p

6 r2

Sp = pa2 + p(p−1)(p+1)
12 r2

So p | Sp, which means that if Sp is a perfect square, then p2 | Sp. This implies that

p | a2 + (p−1)(p+1)
r

2
. But since (p, 12) = 1⇒ p | 12a2 +(p−1)(p+1)r2 = 12a2 +(p2−1)r2.

So p | 12a2−r2, which is equivalent to 12a2 ≡ r2 (mod p). And this is where the Legendre
Symbol comes in handy.

We now know that if Sp is a perfect square, then

(
12a2

p

)
=

(
r2

p

)
, which is equivalent

to

(
12

p

)
= 1. From (iii), 1 =

(
12

p

)
=

(
2

p

)2(3

p

)
=

(
3

p

)
. And now, according to the

Law of Quadratic Reciprocity, 1 =

(
3

p

)
=
(p

3

)
· (−1)

p−1
2 , so

(p
3

)
= (−1)

p−1
2 .

And it is easy to show that p = 12k + 5 or 12k + 7 are never solutions to this equation.
Moreover, since p is prime, it can only be of the forms 12k + 1, 12k + 5, 12k + 7, or
12k + 11, of which the other two verify the relation.

§3 What if p isn’t prime?

In this section, we’ll present a similar method to the one of Legendre Symbol, which
allows us to bend the most imposing condition.

§3.1 Jacobi Symbol

Definition 3.1. Let n an integer and k a positive odd number with its prime factorization
k = pe11 pe22 pe33 . . . perr . The Jacobi Symbol is a function of p and n defined as(n

k

)
=

(
n

p1

)e1 ( n

p2

)e2 ( n

p3

)e3

. . .

(
n

er

)er

.

2vp(n) denotes the exponent of p in the prime factorization of n.
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As noticed, both the Legendre and Jacobi Symbols use the same notation, but there is
no risk of confusion whatsoever. The properties of the Jacobi Symbol, as showed below,
are very similar to those of Legendre. For the following statements, consider (a,b) a pair
of integers and n, and m two positive odd numbers.

(i)
(a
b

)
= 0 if and only if (a, b) 6= 1.

(ii) If a ≡ b (mod n), then
(a
n

)
=

(
b

n

)
.

(iii)

(
ab

n

)
=
(a
n

)( b

n

)
.

(iv)
( a

nm

)
=
(a
n

)( a

m

)
(v)

(
−1

n

)
= (−1)

n−1
2 =

{
1 if n ≡ 1 (mod 4),

−1 if n ≡ 3 (mod 4).

(vi)

(
2

n

)
= (−1)

n2−1
8 =

{
1 if n ≡ ±1 (mod 8),

−1 if n ≡ ±3 (mod 8).

For the Jacobi Symbol, the Euler’s Criterion drops, but the Law of Quadratic Reci-
procity still holds.

Theorem 3.2 (Law of Quadratic Reciprocity)

Let (a, b) ∈ Z∗+ be a pair of odd coprime numbers. Then
(a
b

)(a
b

)
= (−1)

a−1
2
· b−1

2 .

§3.2 Perfect example

Now that you know Jacobi symbol, here is a perfect example so you can get a hang of it
and understand that it can simplify some proofs with Legendre Symbol.

Example 3.3 (Romania TST 2008)

Let m, n ≥ 3 be positive odd integers. Prove that 2m − 1 doesn’t divide 3n − 1.

Proof. This is a perfect example showing that Jacobi symbol can sometimes be more
useful than Legendre.

Suppose there exist such numbers m and n. Then

2m − 1 | 3n − 1⇔ 3n ≡ 1 (mod 2m − 1)⇒
(

3

2m − 1

)n

=

(
3n

2m − 1

)
=

(
1

2m − 1

)
= 1.

Using the Law of Quadratic Reciprocity, we have that

1 =

(
3

2m − 1

)
=

(
2m − 1

3

)
· (−1)

3−1
2
· 2

m−2
2 .

3−1
2 ·

2m−2
2 = 2m−1−1 = odd. Therefore we have that

(
2m−1 − 1

3

)
= −1, but 2m−1−1 ≡

1 (mod 3) which yields a contradiction. �
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If you try to approach the problem using Legendre Symbol, you would have to put in
a lot of effort. Here is the second solution (provided by AoPS user freemind):

Let p be a prime divisor of 2m − 1 of the form 4k + 3. Because p|3n − 1, we have that

d = ord3(p) is3 odd. Since d|p− 1 = 4k + 2, we have d|2k + 1, hence 3
p−1
2 =

(
3

p

)
= 1.

Then, by the Law of Quadratic Reciprocity, we have

(
3

p

)
·
(p

3

)
= (−1)

3−1
2
· p−1

2 = −1

hence
(p

3

)
= −1, so p = 3t + 2.

Let now p be a prime divisor of 2m − 1 of the form 4k + 1. A reasoning just as above

and

(
3

p

)
·
(p

3

)
= (−1)

3−1
2
· p−1

2 = 1 leads to
(p

3

)
= 1, hence p = 3t + 1.

So let M be the multiset of prime divisors p of 2m − 1 of the form 4k + 3, containing
each prime with multiplicity equal to its exponent in the prime factorization of 2m − 1.
Because 2m− 1 ≡ 3 (mod 4), |M | is odd, but M contains precisely all prime divisors p of
the form 3t + 2 of 2m − 1. Then considering mod 3, we have 2m − 1 ≡ 2|M | ≡ 2 (mod 3).
Contradiction!

§4 More useful lemmas

Consider the following lemmas.

Lemma 4.1 (Very useful)

Let p be a prime and a, b a pair of integers. If p ≡ 5 or 7 (mod 8) and p | a2 + 2b2,
then p | a and p | b.

Lemma 4.2 (Very useful)

Let p be a prime and a, b a pair of integers. If p ≡ 3 or 5 (mod 8) and p | a2 − 2b2,
then p | a and p | b.

These lemmas are easy to prove using the Legendre Symbol, but they are a huge help,
along with Lemma 2.1, in solving many Diophantine equations, that have no solutions
or just the trivial ones.

§4.1 Diophantine equations

The problems we’re about to cover are applications of the previous lemmas. The trick
is to factorize a side of the equation so that on the other side we have something like
a2 + b2, a2 − 2b2, a2 + 2b2, or a2 + ab + b2.

Example 4.3

Prove that the equation x3 − 6 = y2 has no solutions over Z2.

Proof. Suppose that such numbers exist. It is clear that x is odd. Therefore y is also
odd and y2 + 6 ≡ −1 (mod 8). This also means that x ≡ −1 (mod 8). We can rewrite

3ordn(a) (sometimes written as γn(a)) is the smallest number of the set {k | ak ≡ 1 (mod n), k ∈ N}.

7



Nguyen Tran Bach Andrei Tiberiu Pantea

the equation as

x3 − 23 = y2 − 2 or (x− 2)(x2 + 2x + 4) = y2 − 2.

Notice that x− 2 has a prime divisor of the form 8k + 3 or 8k + 54. Using Lemma
4.2, we have that this prime divisor also divides y and 1, which yields a contradiction.

Example 4.4

Prove that the equation x3 − 16 = y2 has no solutions over Z2.

Proof. Suppose that such numbers exist. If x = 2k, k ∈ Z, then 8 | y2, which makes y a
multiple of 4. Let y = 4s. Furthermore, 16 | x2 + 16⇒ k = 2l, l ∈ Z. Thus we have that
4l3 − 1 = s2, but s2 ≡ 0, 1, or 4 (mod 8), which can’t happen.

So we have that x and y2 are odd numbers.

y2 ≡ 1 (mod 8)⇒ x3 ≡ 1 (mod 8)⇒ x ≡ 1 (mod 8).

We rewrite the relation given as

x3 − 23 = y2 + 8 or (x− 2)(x2 + 2x + 4) = y2 + 2 · 22.

Notice that x− 2 ≡ −1 (mod 8), which proves the existence of a prime p | x− 2 such
that p ≡ 5 or 7 (mod 8)5. Using Lemma 4.1, a contradiction follows immediately.

4If such prime didn’t exist, then x− 2 ≡ ±1 (mod 8).
5If such prime didn’t exist, then x− 2 ≡ 1 or 3 (mod 8).
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§5 Practice problems

Now, try it yourself!

Exercise 5.1 (Mathlinks). Prove that for all numbers 1 999...9︸ ︷︷ ︸
2k+1

have only divisors with

the last digit 1 or 9.

Exercise 5.2. Let p be a prime number. Prove that there exists x ∈ Z for which
p | x2 − x + 3 if and only if there exists y ∈ Z for which p | y2 − y + 25.

Exercise 5.3 (Gazeta Matematică). Prove that the equation xp1+xp2+xp3+ · · ·+xpn+1 =
(x1 + x2 + x3 + · · · + xn)2 has no integer solutions, where p is a prime such that
p ≡ 2 (mod 3).

Exercise 5.4. Let a > 1 be an odd integer that isn’t a perfect square. Show that there
exist two distinct odd primes p and q such that a is a quadratic nonresidue modulo p
and also modulo q.

Exercise 5.5. Let a be an integer such that ∃n ∈ Z+,

(
a

p

)
= 1 ∀p a prime number,

p > n. Prove that a is a perfect square.

Exercise 5.6. Prove that the equation x3 + 11 = y2 has no solutions over Z2.

Exercise 5.7. Prove that the equation x3 − 10 = y2 has no solutions over Z2.

Exercise 5.8. The system of equations{
x2 + (p− 1)y2 = z2,

(p− 1)x2 + y2 = u2,

has no solutions over Z5, where p is a prime such that p ≡ 3 (mod 4) and none of the
numbers above is equal to 0.

Exercise 5.9. Solve the equation x3 + 19 = y2 over Z2.

Exercise 5.10. Prove that the equation xn − 2n = x2 + y2 has no solutions over Z3.

Exercise 5.11 (Romania TST 1997). Let p be a prime and a, b, and n integers such
that b 6= 0 and pn = a2 + 2b2. Prove the existence of other two integers x and y for which
p = x2 + 2y2.

Exercise 5.12. Prove that for every odd prime number p, all positive divisors of
⌊
p+1
4

⌋
are quadratic residues modulo p.

Exercise 5.13 (BMO 1999). Let p > 2 be a prime such that p ≡ −1 (mod 3). Consider
the set S = {y2− x3− 1 | x, y ∈ Z, 0 ≤ x, y ≤ p− 1}. Prove that there are at most p− 1
elements in S which are divisible by p.

Exercise 5.14. Prove that 4kxy−1 does not divide the number xm +yn for any positive
integers x, y, k,m, n.
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§6 Hints

Hint 5.1. Just rewrite the number as 102k+2−1
5 .

Hint 5.2. 4(x2 − x + 3) = (2x− 1)2 + 11 and 4(y2 − y + 25) = (2y − 1)2 + 99.

Hint 5.3. Use Lemma 2.2 and Fermat’s little theorem.

Hint 5.4. Consider the prime factorization of a.

Hint 5.5. WLOG, consider that n is square-free6. Use Dirichlet’s theorem7.

Hint 5.6. x3 + 33 = y2 + 42. Use Lemma 2.1.

Hint 5.7. x3 + 23 = y2 + 2 · 32. Use Lemma 4.1.

Hint 5.8. Use Lemma 2.1.

Hint 5.9. The only solution is 53 + 19 = 122. x3 + 33 = y2 + 2 · 22. x3 + 1 = y2 − 2 · 32.
Use Lemma 4.1 and Lemma 4.2.

Hint 5.10. Consider three cases: x is even, x ≡ 1 (mod 4), and x ≡ −1 (mod 4). Use
Lemma 2.1.

Hint 5.11. Consider k =max(vp(s),vp(b)). It is easy to see that n − 2k ≥ 0 and n is
odd. This shows that n− 2k ≥ 1. From here use the Legendre Symbol.

Hint 5.12. If p = 4k + 1, write p = 4hq + 1, q is a prime. Use the Law of Quadratic
Reciprocity. Same goes for p = 4k + 3.

Hint 5.13. Prove that the function f : Zp → Zp, f(x) = x3 is injective using Lemma
2.2.

Hint 5.14. Investigate three cases: (m,n) = (odd, even), (odd,odd), (even, even). Use
the Law of Quadratic Reciprocity, (v), (vi), and the following theorem:

Theorem 6.1

Let x, y be coprime integers and a, b, c be arbitrary integers. If p is an odd prime

divisor of number ax2 + bxy + cy2 which doesnt divide abc, then

(
b2 − 4ac

p

)
= 1.
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